Indian Statistical Institute, Bangalore

M. Math Second Year

Second Semester - Ergodic Theory

Midterm Exam Maximum marks: 30 Date: February 22, 2019 Duration: 2.30 hours

Answer any five, each question carries 6 marks

- (a) Let (X_i, B_i, m_i) be two probability spaces and T: X₁ → X₂ be a map. Suppose S₂ be a semi-algebra generating B₂ and for any A ∈ S₂, T⁻¹(A) ∈ B₁ and m₁(T⁻¹(A)) = m₂(A). Prove that T is a mpt (Marks:3).
 (b) Let (X, d) be a compact metric space and μ be a Borel probability measure
- 2. Let T be a mpt of a probability space (X, \mathcal{B}, m) . Prove that T is ergodic if and only if any measurable function f with f(T(x)) = f(x) a.e. is constant a.e.

on X. Let T be a mpt on X. Prove that $\liminf d(T^n x, x) = 0$ for a.e. $x \in X$.

- 3. (a) Let T be a ergodic mpt on a probability space X. Prove that any measurable f: X → R such that f(Tx) ≥ f(x) is constant a.e.
 (b) Determine all probability measures on X = [0,1] so that T: X → X given by T(x) = x² is a ergodic mpt (Marks: 3).
- 4. Define two-sided $(p_0, p_1, \dots, p_{k-1})$ -shift and show it is ergodic.
- 5. (a) Let T be a mpt of a probability space (X, \mathcal{B}, m) . Prove that T is ergodic if and only if for any $A, B \in \mathcal{B}, \frac{1}{n} \sum_{k=0}^{n-1} m(T^{-k}A \cap B) \to m(A)m(B)$.

(b) Let T be a ergodic mpt of a probability space (X, \mathcal{B}, m) and $f \geq 0$ be measurable. If $\int f dm = \infty$, prove that $\frac{1}{n} \sum_{k=0}^{n-1} f(T^k x) \to \infty$ a.e. (Marks: 3).

- 6. (a) Prove that finite union of sets of density zero is of density zero (marks: 2).
 (b) A mpt T on (X, μ) is weakly mixing if and only if for any ergodic mpt S on (Y, λ), the product system T × S on (X × Y, μ ⊗ λ) is also ergodic.
- 7. (a) Prove that $T: S^2 \to S^2$ given by $T(x, y) = (xy, xe^{i\frac{\pi}{4}})$ is strong mixing.

(b) Let X be a metric space and T be a isometric transformation. If μ is a probability measure on X such that T is weakly mixing on (X, μ) , prove that $\mu = \delta_x$ for some $x \in X$ (Marks: 4).